Printed Pages - 5

Roll No.:

m C020514(020) and cludes

e no su place printi al passión proprince anella p

B. Tech. (Fifth Semester) Examination, Nov.-Dec. 2021

(Civil Engg. Branch)

TRANSPORTATION ENGINEERING

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all the questions. From all the units question (a) is compulsory and from remaining parts attempt any two questions.

- 1. (a) Explain the recommendations of Jaykar Committee. 4
 - (b) Define camber. And in a district road where the rainfall is heavy, major district road of WBM

pavement 3.8 m wide and a state highway of bituminous concrete pavement, 7.0 m wide are to be constructed. What should be the height of crown with respect to the edges in these two cases? (c) On a two way traffic road, the speed of overtaking vehicles are 100 kmph and 50 kmph. If the average acceleration is 0.92 m/s². Determine the overtaking sight distance. Draw neat-sketch of the overtaking zone and show the positions of the sign posts. 8 (d) Explain the different types of gradients. 8 2. (a) Draw the neat sketch of different types of traffic maneuvers. (b) Explain the vehicular characteristics. And also determine the average skid resistance, when a vehicle travelling at the speed of 80 kmph, stopped within 2.5 seconds after the application of the breaks. 8 (c) Explain the different types of traffic sign with neat 8 sketch of some signs. (d) Define traffic rotary and also explain the various 8 component with neat sketch.

3.	(a) Enlist the various soil classification system.	4
	(b) Design the pavement section by triaxial test method	
	using the following data:	
	Wheel load $= 4100 \text{ kg}$	
	Radius of contact area = 15 cm	
	Traffic coefficient $= 1.5$	
	Rainfall coefficient = 0.9	
	Design deflection = 0.25 cm	
	E value of subgrade soil = 100 kg/cm^2	
	E value of base course $material = 400 \text{ kg/cm}^2$	
	E value of 7.5 cm thick bituminous concrete	
	surface course = 1000 kg/cm^2	8
	(c) Using the data given below, calculate the wheel load	
	stresses at (a) interior, (b) edge and (c) corner regions of a cement concrete pavement using Westergaard's	
	stress equations. Also determine the probable	
	location where the crack is likely to develop due to corner loading.	

Wheel load,

г	4	1
4	4	. 1
ъ.		- 4

	Modulus of elasticity of		
	cement concrete,	$E = 3.0 \times 10^5 \text{ kg/cm}^3$	2
	Pavement thickness,	h = 18 cm	
	Poisson's ratio of concrete,	$\mu = 0.15$	
	Modulus of subgrade reaction,	$K = 6.0 \text{ kg/cm}^2$	
	Radius of contact area,	a = 15 cm	8
	(d) Explain the different types of	joints with neat sketch.	8
4.	(a) Explain different types of gau	ges.	4
	(b) Explain the various types of sketch.	rail failures with neat	8
	(c) Define sleeper density. And use of M + 5, find out the number for constructing a railway tr	er of sleepers required	
	(B. G. track).		8
	(d) Explain the different types of	ballast.	8
5.	(a) Enlist the different types of over the turnout.	causes of derailments	4
	(b) On a B. G. 3° curve the provided for a speed of 70 l		

	(i)	Calculate the value of equilibrium cant
	(ii)	Allowing a maximum cant deficiency. What
		would be the maximum permissbile speed on
		the track?
c)	Explain the different types of track junction with neat sketch.	
d)	Explain the operation classification of railway station with neat sketch.	